Habitability in Saline Environments on Mars

Nicholas J. Tosca

Origins of Life Initiative
Organismic & Evolutionary Biology
Harvard University
Cambridge, MA 02138

The Ancient Martian Surface: How Habitable?

- To what extent can we generalize?
 - On Mars, like Earth, water is the only game in town...
- Some controls on the limits of terrestrial life:
 - Temperature
 - Radiation
 - Acidity
 - Temporal availability of water
 - Salinity (water activity)
- Define habitability in an evolutionary context
 - Prebiotic chemistry & the *origin* of life
 - Evolution and/or adaptation to changing surface chemistry

Water Activity (a_{H2O})

- A thermodynamic measure of salinity
 - Water is chemically unavailable at high solute concentration
 - Increasing salinity decreases water activity

$$\ln a_{_{H_2O}} = \frac{\phi(\sum v_i m_i) M_{_W}}{-1000}$$

Selected Water Activity Values

Pure water	1.00
Average river water	0.99
Seawater	0.98
Halite (NaCl) saturation	0.75

Sharp a_{H2O} limitations on biological activity

$a_{\rm H2O}$: Limits on terrestrial life

- Microbial strategies for low a_{H2O} conditions:
 - 1. Synthesize "compatible solutes" (e.g., glycine, betaine)
 - 2. Increase salt content of cytoplasm (Evolutionary processes)
- Biochemical consequences of high salinity (low a_{H2O})
 - Inhibition of protein folding
 - Bio-molecule denaturation & functionality loss
- What are the numerical limits?

Cytoplasm, from Goodsell (1993) The Machinery of Life.

$a_{\rm H2O}$: Limits on terrestrial life

$a_{\rm H2O} \sim 0.90$:

Limit for most organism growth

$a_{\rm H2O} \sim 0.75$:

Limit for most extremophilic fungi
 & archaea

$a_{\rm H2O} = 0.61$:

- Effective habitability limit
- X. Bisporus in high-sugar food

Water Activity and Food Science 1.00 fresh meat, sausages, eggs, low-salt bacon high-salt bacon, orange juice concentrate 0.90 jams, hard cheese, cured ham 0.80 molasses, maple syrup 0.70 dried fruit, corn syrup, rolled oats 0.60 **a**H20 chocolate, confectionary, honey 0.50 dried egg, cocoa 0.40 crackers, dried potato flakes 0.30 dried milk, dried vegetables 0.20 0.10 (adapted from *Brewer*, 1999) 0.00 E

- ~175 of 10⁷ known species exhibit halo-tolerance / halo-philism
- Regardless of the precise number, limits provide useful benchmarks

Calculating a_{H2O} for Martian Systems

- 1. Constraints on dilute fluid chemistry
 - Experimental weathering studies
- 2. Thermodynamic model for highly saline waters
- 3. Data on mineral solubility
- 4. Martian saline assemblages

Thermodynamic simulation of evaporation yields osmotic coefficient (calculated with Pitzer equations)

Water activity is proportional to the *osmotic coefficient*

$$\ln a_{_{H_2O}} = \frac{\phi(\sum v_i m_i) M_{_W}}{-1000}$$

Goal: For a martian water, calculate a_{H2O} at the point of saline mineral precipitation

Mineral Precipitation and $a_{\rm H2O}$

a_{H2O} and Seawater Evaporation

Meridiani Planum Evaporite Minerals

Water Activity on Mars

a_{H2O}: General Mineralogical Trends

- Chlorides reflect distinctly low a_{H2O} (<0.50)
 - Function of sulfate vs. chloride solubility
 - Insensitive to SO₄/Cl ratio of initial water
- Gypsum & carbonates are "insoluble" & reflect high a_{H2O} (~0.95)

All Mg-, Fe²⁺-sulfates reflect low a_{H2O} (~0.78 and lower)

- Fe³⁺-sulfates (exclusive of jarosite & schwertmannite) reflect both low $a_{\rm H2O}$ and low pH
 - Include ferricopiapite, copiapite-group minerals, rhomboclase, etc.

Low a_{H2O} : A Challenge for Life on Ancient Mars

•	Distinction between
	originating in & adapting to
	low a _{H2O}

 Halo-tolerance/philism is evolutionary

Selected Water Activity Values

Epsomite at Meridiani Planum Halite at Meridiani Planum SNC Meteorite Brines	0.78 0.51 0.40
Paso Robles Soil Brines	0.61
Limit for most organism growth Limit for most extremophilic fungi & archaea Effective "habitability limit" (<i>X. bisporus</i>)	~0.90 ~0.75 0.61

- Low a_{H2O} and pH prohibit pre-biotic reactions
 - There must be numerical limits & they provide useful benchmarks
- Where are the dilute fluids?
 - Are we seeing snapshots as Mars evaporated to dryness?
 - Is this representative of H₂O-limited processes?
- Window of habitability was short and occurred early

Relative Timing

Origin, Evolution & Preservation

On a local/regional scale:

- Need Favorable "pre-biotic" chemistry
 - Reducing conditions
 - "Mild" pH
 - Highest possible a_{H2O}
- Maximum temporal availability of water
 - Sustained versus episodic
- Optimal preservational (post-depositional) characteristics
 - Less water exposure
- In other words: go to where life grabbed a foot-hold & was pickled

Optimal habitability & preservation: An Example

Sites capturing a phyllosilicate → sulfate transition

- Gale crater, S. Meridiani, Miyamoto
- Phyllosilicate-dominated strata: Habitable chemistry
 - Higher a_{H2O} (Generally)
 - Reducing (Fe-phyllosilicates)
 - Circum-neutral pH
 - Prolonged water availability
- Sulfate-rich strata: Diverse preservation potential
 - Morphology, isotopic signatures, etc.
- Capturing the transition:
 - How did chemistry & climate change?
 - How did life respond?
 - The essence of our understanding of the martian surface

Maximizing Habitability: Syn-depositional Characteristics

Water Activity

,,,,,,	riotrity
Good	Bad
Phyllosilicates ^a	Mg-sulfates (all)
Gypsum	Fe ²⁺ -sulfates
Carbonates	Na, K-sulfates
	Chlorides (all)
	Fe ³⁺ -sulfates ^b
R	edox
Good	Bad
Fe ²⁺ -phyllosilicates ^c	Fe ³⁺ -sulfates
Siderite	Fe ³⁺ -oxides
	pН
Good	Bad
Phyllosilicates	Fe ³⁺ -sulfates ^b
Gypsum ^d	"Ochreous" Fe ³⁺ -sulfates ^e
Mg-sulfates ^d	Fe ²⁺ -sulfates ^f
Temporal ava	ilability of water*
Good	Bad
Phyllosilicates	

NOTES:

- ^a In general occur in dilute waters. Many smectites form in saline conditions, thus cannot as yet quantify a $_{\rm H2O}$
- ^b Fe ³⁺ sulfates exclusive of "ochreous" phases; include copiapites, rhomboclase, etc. These minerals require both low a _{H2O} and very low pH to form
- ^c Generally require reducing conditions. In addition, Fe³⁺ smectites may only form through the oxidation of Fe²⁺ -precursors, suggesting they originally require reducing conditions
- ^d These phases alone cannot constrain pH; they are pH-independent
- ^e Include jarosite and schwertmannite; they are relatively insoluble but need acidic pH to form
- ^f Do not strictly require low pH, but acidic pH favors their formation and stability through suppression of oxidation kinetics by O₂(g)
- * Much of these constraints may come from sedimentology & in situ textural analysis in addition to geomorphology